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. ABSTRACT

Solar X—fay, extreme ultraviolet, Hx and radio emission were studied
to determine what solar radiation is best suited for an automatic flare
alarm system aboard a satellite for the detection of the start of a
solar flare. Although hard X-rays A\ <1 A), centimeter~wavelength
solar radio bursts, and flashes at certain EUV wavelengths usually have
faster rise times and peak earlier than soft X-rays in the 2-16 i range,
the data available to date show that on the average the start time of
the 2-16 A X-Tays occurs earlier than the start times for these other
types of data. The early start times and large percentage increase of
2-16 & X-rays make this radiation the best suited for the automatic
detection of solar flares for the present state of the art of solar

radiation measurements.

KEY WORDS

Solar flare Bxtreme ultraviolet
X-rays H-Alpha
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, EARLY DETECTION OF A SOLAR FLARE
A STUDY OF X-RAY, EXTREME ULTRAVIOLET, H-ALPHA, AWD
SOLAR RADIO EMISSION FROM SOLAR FLARES

by
R. F. Donnelly

1. INTRODUCTION

The study reported here originated from a guestion that arose from
NASA's manned Apollo-Telescope-Mount (ATM) program. In the ATM orbiting
solar observatory, it was planned to use X-ray measurements to detect
solar flares of Hx importance = 1 (Mr. Art White, NASA, Huntsville, pri-
vate communication), in order to start high time-resolution measurements
of the flare. The question was "Are there any other measurements that
would improve the detection of solar flares at the earliest possible
moment?" This question in turn led to many other questions, some of
which are shown in figure 1 along with an indication of the data used to

answer the questions.

Tie resulis ol Lue Comparisou Ul Lils afier-oie-lact [iafre Gabd are
discussed in section 2. The qualification "after-the-fact" is importanﬁ.
It refers to the fact that the data were timed after the flare had occurred.
The "after-the-fact' start time therefore would tend to precede the time
when any practical flare alarm system would be set off. This should be

kept in mind when reading section 2.

In section 3, the results of an analysis of Explorer-30 X-ray flare
data using digitél—computer simulation of the presently planned X-ray a
alarm system are discussed. This analysis provided not only a coarse
evaluation of the planned alarm system but also some informstion on the
time delay between the after-the-fact start time and the time when the

flare alarm was set off.
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2. COMPARISON OF AFTER-THE-FACT X-RAY, SOLAR RADIO,
Hee, AND EXTREME ULTRAVIOLET FLARE RADIATION

2.1 Sources of Data

Published X-ray data from several different satellites listed in
table 1 were used in order to increase the number of events in our study
and to avoid forming conclusions that might be influenced by biases in the
instrumentation or data processing techniques of any one satellite experi-

ment. The data reported in Solar Geophysical Data are preliminary reports,

which appear to be slightly incomplete and contain a few errors; but these
are minor problems that are believed not to have influenced the main re-
sults of this study. The timing accuracy given in table 1 for the avail-

able X-ray data was certainly less than desired.

The Ho flare data studied were those published in Solar Geophysical

Data (sgb). The use of Hx data is somewhat subjective since thé reports
from different observatories are often in disagreement and the wéighting
and averaging of the different reports is not a simple one. The faults

in Hy flare reports discussed by Warwick (1965). Sawver (10A7) eond Dedzon
and Hedeman {1962) Lave not™been removed from the present study, but their
possible influence on the results will be discussed later. Hopefully, the
quality of the H-alpha observations used in this stqdy may be slightly
better than the earlier data considered in the papers cited above as a

result of their criticism.

The solar radio data used in this study are also from SGD. Since
the radio observatories that report their data in SGD are located.in the
continental United States, Canada,and Argentina, only the 1200 to 2400 UT
period is well represented. Although radio bursts are classified into
numerous types of events, the present study is only concerned with whether
any type of radio event was observed for a particular. flare and what the

earliest start time was of the associated radio events.
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2.2 Intercomparison of Soft X-Ray Data

According to Dr. L. Van Speybroeck of American Science and Engineering
the ATM X-ray alarm will utilize about 1-8 A measurements. Figure 2 shows
the normalized relative wavelength response of the radiation detectors'
corresponding to the various X-ray data involved in the present study.
Clearly the 0.5-3 A and bL-60 & Explorer-30 data, the 0GO-data, and the
Vela 0.5-5 k data cannot be considered to be representative of the 1-8 i
X-ray measurements proposed for the ATM alarm system; these data will be
used for other purposes. The 1-8 & and 8-16 & Explorer-30, 2-12 &
Explorer 33, and 8-16 L 080-3 data on the other hand wili be assumed to
have characteristics about the same as the 1-8 L ATM alarm measurements
will have. The Explorer 30, Explorer 33, and 0S0-3 X-ray data were
examined for flares when any two of these satellites made X-ray observa-
tions to find out whether the observations from each satellite were con-

sistent with the observations from the other satellites.

Only 13 flares were found when both Explorer 33 and 0S0-3 made

Yoray cheavwaticne - Tn each case  hoth exnerimenters renorted X-rav
flares, but the timing was onl? in falr agreement. The average difference
in start times was about 0.8 min (with a rather large standard deviation
o of 4.8 min). The average difference in peak times was 1.5 min (o =
10.4 min). In both the start and maximum timing, the 0S0-3 timlng pre-
ceded the Explorer 33 timing on the average. Some of the differences

in timing could very well be due to the differences in their relative
wavelength responses, coupled with the time dependence of the flare

radiation varying over the 2-16 & range.

The Explorer 33 and 30 data were examined to learn how well the
occurrence of reported X-ray flares agreed when both satellites made ob-
servations. There were 25 cases when the observation period of Explorer
30 overlapped by a minute or more the start-to-maximum time of the X-ray
flares reported from Explorer 33. Of these few cases, 84 percent were
reported as outstanding events in the Explorer 30 data. The reverse

comparison shows that a large percentage of Explorer 30 outstanding events



occurred when Explorer 33 did not report an X-ray flare (when "no obser-
vations" was hSt reported). This was expected since only X-ray flares
with a flux greater than or equal to 40O percent were reported from

the Explorer 33 data. Also, the reporting of short periods of no solar

X-ray observations appeared to be incomplete for the Explorer 33 data.

Similarly, 89 percent of the cases when Explorer 30 made X-ray
observations when 0S0-3 observed an X-ray flare were repdrted as an out-
standing event in the Explorer 30 data. Conversely, 50 percent of the
outstanding Explorer 30 events that occurred when 0S0-3 made X-ray mea-
surements were reported as an outstanding event in the 080-3 data. In
conclusion,it appears that smaller X-ray flares were reported from the
Explorer 30 data than from the 080-3 and Explorer 33 data. These three
sets of data appear to be in good agreement on the occurrence of X-ray

enhancements 2 0,005 ergs cm™@ sec

when observations were being made.
2.3 Start-to-Maximum Time and Intensity
of Soft X-Ray Flares

Filgure 3 shows LUS LaLiel spload-uvub Uisbi ibuuivu ol ouar U= Lu-maa lww
times for the X-ray flares observed by Explorer 33 and 0S0-3. A few
events with very large start-to-maximum times are probably composed of
several superimposed X-ray flares since several Hxy flares were reported
during these events. The distribution curves show that the soft X-ray
start-to-maximum times are clustered mainly in the 3-18 min range.
According to Sengupta and Van Allen (1968) the rising portion of the
Explorer 33 X-ray observations can be reasonably well fit with a function
of the form 1 - exp(-t/T; ),where T, varies from flare to flare but is

typically about 5 min.

Figure L4 shows that most of the reported X-ray flares are rather
small and that the published list of 0S0-3 outstanding events includes
quite a few events smaller than reported for Explorer 33. The number of
X-ray flares observed appears to be roughly inversely proportional to the

ratioc of the peak X-ray flux to the preflare flux for flare enhancements
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above the minimum reported values. An average of the flux increases for
the flarex reported for a particular satellite would be strongly dependent

on the mimimum size reported and, therefore, would not be too meaningful.

2.4 Comparison of Occurrence of Soft X-Rays and Hx Flares

Figure 5 shows (l) that most of the X-~ray flares reported from the
Explorer 33 data for which the Hx flare was unambiguousi&* identified are
accompanied by H-alpha flares of importance 1 and greater; and (2) that
nearly all of these have either normal or bright intensities. These trends
are stronger for the larger X-ray flares with an increased tendency towards
the flare intensity being bright rather than normal. The 080-3 data in
figures 6, 7,and 8 also show that these results are a function of the

intensity of the X-ray flare.

For the Explorer 30 outstanding X-ray events about 20 percent
‘were not sccompanied by a reported Hy flare. Most of these occurred
when "no flare patrol” was not reported. Figure 9 shows the distribution
of the 80 percent with reported Hy flares. The results in figure 9 are
consistent with the dependénce on the X-ray fiafe intensity found in
figures 5-8, and with the conclusion in section 2.2 that the reported
Explorer 30 outstanding events include smsller X-ray flares than the
Explorer 33 and 0S0-3 1lists of X-ray flares.

Figure 10 shows the association of 0S0-3 soft X-ray flares with Hx
flares as a function of importance and intensity. Considering the X-ray

flare intensity dependence found in figures 5-8, the results in figure 10

* Twenty-six percent of the Explorer 33 X-ray flares were excluded from
the data used in figure 5 because the Hy flare was not unambiguously
identified. These included some events where 'no flare patrol" was
reported, some when no Hx flares were reported and "no flare patrol"
was not reported, some where several flares occurred during the X-ray
flare, and some where the Hy flare reports from different observatories
for the same flare were too much in disagreement to support a simple
consensus of the reports. Sengupta and Van Allen (1968) report that
every Explorer 33 X-ray flare of peak intensity greater than 3.0 x 107*
ergs cm” 2 sec "1 in the 2-12 & range was accompanled by an He flare.
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are undocubtedly dependent on the minimum size of X-ray enhancement reported
as an event. There is a trend toward an Hy flare having an increasing
ilikelihood of being accompanied by an X-ray flare for increasing Ho impor-

tance and intensity. This trend was also evident from the Explorer 30

data. About 69 percent of the Hy*flares of importance 1 or greater are

accompanied by 0S0-3 X-ray enhancements greater than 0.00Z2 ergs cm™ sec™d;
if faint intensity flares are excluded the rate is up to about 73 percent.
Dodson and Hedeman (1968) have reported that three-fourths of the flares

during the IQSY reported in the Quarterly Bulletin on Solar Activity as

Hy importance 1 or greater would not have been rated with such a high
importance if all of the available flare patrol data had been carefully
scrutinized. If the overrated data were removed from the present study,
the percentage of Hy flares of importance 1 or greater which are accom-
panied by reported X-ray enhancements would probably be much greater

than 69 percent. Indeed, many of the flares encountered in this study,
which were reported to be of importance 1 or greater and were not accom-
panied by a reported X-ray event even though X-ray measurements were being
made, were cases where only one observatory reported the flare. Usually
g thc Iy flarc

importance.

2.5 ©Solar Radio Emission

Perhaps the best contender with X-ray data for auvtomatic detec-

tion of the start of a solar flare is the solar radio emission at centi-
meter wavelengths or shorter. Solar radio bursts have rapid rise times;
they usually occur early in the flare; and the percentage increase in the
radio flux is fairly high. All of these factors are desirable for auto-
matic detection systems. Figure 11 shows the distribution in rise times
of radio bursts as a function of transmission freguency. About half of
the radio bursts at all of the frequencies shown have start-to-maximum
times less than 1.5 min. Hence the radio bursts have start-to-maximum
times that are much shorter than the soft X-ray data in figure 3. One

possible reason for this is that the start-to-maximum times for both
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the slow rise-and-fall and fast solar radio bursts are often reported for
the same event, whereas the soft X-ray enhancements are each reported as
one event. However, this is not the main reason. The soft X-ray enhance-
ments I have examined do not have such distinct parts, at least for wave-
lengths greater than 2 k. They seem to have at most a period of faster
rise during the fast solar radio bursts. Neupert et al. (1967) found
during a flare of importance 2b that the X-ray emission lines for the
highest stages of ionization (Fe XXIV - Fe XXV) increasedmmost rapidly at
the onset of the flare, while the lower stages of ionization (Fe XVII -

Fe X{) were observed later in the event. Perhaps certain lines in the
soft X-ray range do have a fast component corresponding to the fast solar
radio bursts, but the net radiation observed by a broad-band soft X-ray
detector at A > 2 A does not. [The hard X-ray observations (A < 1 A) do
contain fast bursts closely associated with the centimeter wavelength
sclar radio bursts, at least for the first such radio burst of the flare
(Arnoldy, et al., 1968a)]. 1In conclusion, the solar radio bursts generally
have much shorter start-to-maximum times {0.2-2 min) than do the broad-

band soft X-ray measurements (3-18 min).

In section Z.4, it was [ouud thal about &5 porccnt of the colar flares
of Hee importance 1 or greater that occurred when 0SC-3 made measurements
were accompanied by a reported X-ray enhancement. The flares not detected
by X-rays were examined to determine whether they could have been detected
by solar radio measurements. Only 10 percent of the fiafes not detected by

X-rays were accompanied by solar radlo bursts reported in Solar Geophysical

Data (SGD), and these cases were only importance 1 flares with very small
radio bursts. Taking the observation time bias of the SGD data into ac-
count, it appears that at best the percentage of flare of Hy lmportance 1-
or greater that would be detected could increase from 69 percent to about
79 percent if very sensitive solar radio measurements were made in addition
to the soft X-ray measurements. The flares added in this way would not be
the most desirable ones. This same Increase could probably be Jjust as
easlly achieved by improving the soft X-ray measurements. Considering

figure 6, the number of subflares detected would probably also increase.
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It should be remembered, however, that the 050-3 list of outstanding X-ray
flares includes falrly small events. If the ATM X-ray flare alérm system
were fairly insensitive so that 1t could not detect many of the 080-3
repofted Z~ray fleres, then -the advantage of adding solar radio measure-

ments would undoubtedly be increased.

2.6 Comparison of Timing of Soft X-ray Enhancements,

Solar Radio Bursts, and Hy Flares

The meximum solar radio emission and maximum Hy emission usually precede
the maximum of the soft X-ray enhancement by several minutes, as is evi-
dent from figures 12 and 13. Hence the solar radio bursts not only have
fast start-to-maximum times but they also occur early in the rising por-
tion of the soft X-ray flare. These facts make solar radio emission seem
to be very suitable for the early detection of solar flares. On the other
hand, figures 1k and 15 show that the reported start times for the soft

X-ray enhancements precede the reported start times of the solar radio

bursts on the average, as has been pointed out by Teske {1968a and b).

Jhus. 1t appears TNAaU SOIT A~Idy MedsUreliellls are pultullially LUS LSy

for the very early detection of solar flares.

Reported start times depend not only on the actual start of the
event but also on the slgnal-to-noise ratio, the way the date are recorded,
and the way they are processed. Figure 16 illustrates some of these diffil-
culties. The noise includes noise from the electronics of the radiation
detection system.és well as any nonsolar signals. For example, the
response of an X-ray detector to particles that cecllide with the satellite
would be included as noise. For solar radio measurements, man-made inter-
~ ference, the antenna and receiver noise, the galactic radio noise, and
the radio noise from the earth's atmosphere would all be included in the

"noise" curve in figure 16.

If the noise level in figure 16 were increased by a factor of 10,
the reported start time would probably be delayed. If the radiation

detector response were highly variable before the flare, the reported
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start time would probably be delayed to the time when it was clear that
the flare enhancement exceeded the preflare oscillations, or the data
processor may use a linear extrapolation back to the average level before
the flare (point B in figure 16). If the flare enhancement rises slowly
at first and then rapidly, the start of the rapid rise might be re-
ported if the noise level were high or if the data were recorded on a
linear scale; on the other hand if the noise level were low and the data
were recorded on a logarithmic scale, the start of the slow rise might be
reported as the start time for the whole event. These are some of the
problems in addition to the relatively large timing errors given in
table 1 for the soft X-rays which might be affecting the sfart-time data
used in this study. It is also difficult to measure the time of maximum
radiation of soft X-ray enhancements because they are often rather smooth
and flat topped. Since the solar flare radiation enhancements usually
finish with a slow asymptotic approach to the preflare level, the end
time is indistinct. Because of the above difficulties, the start-to-
maximum data used in this study may give a rather poor indication of the
rise times of the Tlare ennancement. uULlorLuldiLely, iunlulmablun v s

10-90 percent rise time was not avallable.

Despite the above problems in start-time data, I believe the trend
deduced from figures 14 and 15 is too strong not to be valid, i.e., the
measureable start time for soft X-rays generally precedes that for the
solar radio enhancements. The sevéral events for which copies of the
solar radio and X-ray records were avallable showed the same results.

For example, for the proton flare of July 7, 1966, the soft X-ray enhance~
ment (2-12 ) nad started by 0023 UT (Van Allen, 1967) while the solar
radio bursts in the 200-17,000 MHz rauge did not start until about -
0026 UT or later.

Figure 14 also indicates that on the average the Hx flare starts at
about the same time or a little before the soft X-ray enhancement. The
Hy start times used were the earliest reported among  the reports from
several different observatories. The idea was that fhe earliest report

probably corresponded to the observatory having the clearest observing:
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conditioas;;bpt perhaps some of these early reports were the result of a
dats proceééor's blas toward plcking the earllest starting time rather
than of excellent seeing conditions, When an average start time is used
for the reports of the various Hy Cbservatories, the distribution is
shifted so that the start of the soft X-rays is at about the same‘time
or a little hefore the start of the Hy flare on the avefage. Since the
percentage increase in Hy radiation from the whole sun is very small
during a flare, Hy observations are not well suited for automatic detec-
tion of solar flares. Even if the spatial field of view were effectively
decreased (for example with a raster scan technique ) in order to increase
the percentage Hy enhancement, it would still be difficult to achieve the

percentage increase observed at X-ray wavelengths.

2.7 Comparison of Soft X-Ray Enhancements

and Extreme Ultraviolet Flashes

Thirteen EUV flares observed by Drs. L.A. Hall and H.E. Hinteregger
of AFCRL with a spectrometer aboard 0S0O-3 were studied. My general con-
clus1on Was LUaL Lie Buv fiasnssd wors much 1ike tha rentimeter radio and
hard X-ray observaticns. The EUV flashes tended to have faster risé
times and peak earlier than the soft X-rays, but the EUV start time lagged
behind the soft X-ray start {ime, in seven out or eight cases for which
X-ray date were also available. For 10 out of 13 cases, the reported
start time of the centimeter-wavelength radio burst occurred before or at
the same time as the start of the EUV flash. Since the percentage radia-
tion enhancement for the whole sun seems to be smaller at EUV wavelengths
than at centimeter wavelengths, solar radio measurements would probably
be superior to EUV measurements for automatic flare detection, unless
the EUV measurements used a raster scan of the sun. In conclusion, there
are few data available as yet on the EUV emission of solar flares and those

~that are avallable do not indicate that EUV measurements would improve the

early detection of solar flares.
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One type of sudden ionospheric disturbance called sudden frequency
deviations is @értly'due to flashes of EUV radiation ( Donnelly, 1967) .
Davies and Donnelly (1966) found that on the average, the start of the
SFD preceded the onset of the explosive phase of the Hx flare by about
1.5 min. The explosive-phase data used in thls study had been pro-

cessed visually at Lockheed Observatory.

Recently, Angle (1968) of Lockheed Observatory reprocessed their
explosive-phase data using a "densichron" to measure the Hy flux varia-
tions as a function of time. She found that the start of the rapid-rise
phase determined from the densichron measurements preceded the visual
estimates on the average by about 1 to 1.5 min. This means that the start
of SFD's is about the same as the start of the rapid rise of the Hx
flare if the HX data are processed photoelectrically. Since the Lockheed
observers who did the visual processing of their flare patrol films are
about the best in the world, this also suggests that our eyes may deceive
us more than was generally realized. Comparing the start time of SFD's
with the start time reported for 0S0-3 8-16 iy X-ray events, I found that

]
4 PRS- R T o AT IR} T
the ¥Yorows pioried Je o Maii Tl LS WL

5 ULl LLe aveluge. Hence, toe
indirect evidence of EUV flashes obtained from SFD's does not indicate

that EUV measurements would improve the early detection of solar flares.

2.8 Comparison of Soft X-Rays and Hard X-Rays

Hard X-ray enhancements (A << 1 &) tend to have faster rise times
and peak earlier than soft X-ray enhancements (A = 2 L), much like the
centimeter.wavelength burst. The VELA data (Conner et al., 1964) indicate
that hard X-ray measurements are not as good as soft X-ray measurements for
the early detection of flares because the X-ray emission for some flares
does not extend down to the hard X-ray wavelengths. Conversely, there is
no definite evidence that hard X-ray flares occur without being accom-
panied by a soft X-ray enhancement. DeJager (1967) has reported on one
hard X-ray flare when no D-region SID's were reported, although an SED
was observed over Africa. This hard X-ray flare was rather impulsive and

if the soft X-ray enhancement were similarly impulsive the D-region SID
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effects may have been too small and too short in duration to distinguish
from the noisé normally present in these SID data. The 0GO I and ITL
hard E-ray data (Arnoldy et ale, 1968 a and b) compared with Explorer 33
(2-12 A) data do not indicate that the start time of hard X-rays is any
eagrlier than that for soft X-rays. In conclusion, no evidence that hard
X-ray measurements would improve the early detection of solar flares was
found. Hard X-ray measurements would be important if the goal were to
detect scolar flares having energetic nonthermal processes rather than
just detecting any solar flare of Hx importance 1 or greater. Arnoldy
et al. (1968a) found that hard X-ray bursts preceded large electron
events for flares located west of the central meridian; hence, hard X-ray
measurements provide a warning of electron events. It is too bad thaﬁ

they @o not provide a warning of the more dangerous proton events.

3. FLARE ALARM SIMULATION

Explorer 30 data were studied using a computer program to simulate
the planned soft X-ray (L - 8 A) ATM alarm system to try to learn

e misrh Aalasr afPfoar +the "ofror_the PortT adandt £dma dhnva cra A AP anaa . Al
AT’ T ne ST Ter-Thnae-Tn2T tome

e P O R TR e R R e T e

alarm detected the flare. These data were provided through the courtesy
of Mr. R.W. Kreplin of NRL and R.H. Olson of ESSA. The advantages of the
Explorer 30 data are as follows: (1) very high time resolution; for some
events a measurement of the sun was made every 0.83 sec; (2) high
intensity resolution; (3) good calibration; (4) low instrument noise; and
and (5) several different wavelength ranges, 0.5-3, 1-8, 8-16, and

Lh-60 &, The disadvantages are: (1) small dynamic range, (2) linear
rather than logarithmic recording of the data, and (3) short periods

of observation, about 15 to 20 min as the satellite passed over the tele-
metry ground station. Because of the short period of observations, the
beginning was missed for most of the flares observed by Explorer 30.
Because of the low dynamic range, the detectors were often saturated,
especially during a flare and sometimes even before the flare started.

As a result, very few of the Explorer 30 observations were suitable for

this study. Table 2 lists the flare events studied in detail. Table 3
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lists some Explorer 30 data which were studied to provide information on

how variable the X-ray measurements were when no flares occurred.

The available information on the planned ATM flare alarm system
was as follows: (l) the oniy radiation measurements would be in aboﬁt
the 1-8 A range (Dr. L. Van Speybfoeck, American Science and Engineering,
private communication), (2) the alarm would be set off if the soft X-ray
flux exceeded a threshold level set by an astronaut, and (3) five thresh-
old levels spaced so that each level was four times the flux rate of
the next lower level would be available (ATM EXPT SO54, 1967, p 6-21).
(According to a recent communication from Dr. L. Van Speybroeck of American
Science and Engineering, the threshold level spacing has been revised
from 4 times to about 1.45 times.) The time variations of the Explorer
30 1-8 & and 8-16 & observations should be similar to what a 5-20 & de-
tector would observe. In the computer simulation studies, the flux rate
for the lowest threshold level was made arbitrarily; only the spacing
between threshold levels was really important for the simulation study.

Calculations were first made for one base threshold level and then for a

apnnnAd haooco lowral »
=2C0onl 2a8a LevVel C

The results of this simulation study indicated that the four-times
-spacing of threshold levels was too coarse because it resulted in the
detected start time being too much later than the actual start ofAthe
X-ray enhancement and solar radio burst. The study indicated that twice
as many threshold levels did not provide a substantial improvement. (The
revised spacing of 1.45 times looks good but has not yet been studied in
detail.) Further study of actual X-ray and solar radio data should be

made to determine the optimum spacing of threshold levels.

Figure 17 shows the start of a fairly large soft X-ray and solar
radio burst. The small jiggles in the soft X-ray points are largely due
to scaling and plotting errors. The X-ray flux increases slowly from
1753 to 1756 UT, then increases at an increasing rate. The 1-8 &
data seem to be better than the 8-16 A since their percentage in-’

crease is much greater than for the 8-16 K data. The start times reported
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in 8GD for the radio burst at 10,700 MHz (1757.1 UT), 960 MHz (1759.k utr),
and 486 MHz (1800 UT) lag significantly behind the X-ray start time.
Although the after-the-fact start time reported for 1415 MHz and 606 MHz
was 1756 UT, the radio enhancement at these frequencies would not have
been detected by a real-time alarm system until several minutes later.

The 2800, 4995, and 8800 MHz data in flgure 17 are as good-as the 1-8 A
data for detecting the early start of this flare if the increase in X-rays
from 1753 to 1756 UT is too slow or small to be certain that a large

flare would follow. Even if the increase in X-rays from 1753 to 1756 UT
were too slow to justify starting high resolution flare observations, it
might still be useful for triggering an alarm to warn the astronauts that
the X-ray flux is increasing. An X-ray alarm using a four-times spacing
might not detect this flare until 1757.2 UT for 1-8 L or until about
1800.7 UT for the 8-16 & data. This latter time would miss much of the

rapid-rise part of the flare.

Basu and Covington (1968) found that the initial growth of 2800 MHz
bursts has a time dependence given approximately by & = ct®. The start
vi Lue A~ray enhancement ag well as Uhe radlou bursts in rigure 17 exhibit
this time dependence. Indeed, the start of each of the X-ray events in

table 2 has nearly a £ time dependence.

The 1b flare of September 18, 1966, is an example where the start
time detected by the simulated alarm system lagged several minutes behind
the start-time of the solar-radio bursts. In addition to the problems
of the coarse spacing of threshold levels, there was a problem in that
the X-ray flux was decreasing before the flare. Consequently, the thresh-
old level that rose Jjust above the flux level shortly before the flare
was not used to trigger the flare alarm. Several other events also
showed a preflare slow decay followed by a slow rise. This shows that
slow changes in flux level should be monitored and that the flare alarm

level may need to be reset, sometimes as often as every 5 min,
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The “a%fér~the—fact" X-ray start times for the events listed in
table 2 occurred at about the same time or slightly earlier than the re-
ported start times for the radio bursts, in agreement with the results
in figures 14 and 15. The-X~ray measurements secemed to be a little better
than the solar radio data at indicating a gradval rise just befbre the
méin burst. For practical purposeg, if the alarm has to be triggered by
the main rise rather than by the earlier slow rise, then the 2695 MHz,
2800 MHz, and 4995 MHz data are about as good to use as the soft X-rays.
The X-ray measurements indicate that 1-8 L is as good or better than the
8-16 L range and that both of these are better than the 4L-60 i range for

the automatic early detection of a flare.

The interference in soft X-ray measurements from particles colliding
with the satellite was a minor problem for the data in table 2. $Such
interference would be a non-neglible problem for a flare alarm system
using only X-ray measurements. Detectors sensitive to the particles but
insensitive to the solar X—rays should be incorporated into the X-ray
alarms svstem to avoid false alarms. Such a system would still suffer
from reduced sensitivity in particle anomalies. “hls problem might De
alleviated by also making centimeter-wavelengfh radio measurements with
equipment having a sensitivity comparable to present ground-based solar
radio receivers. (The 297 MHz and 2000 MHz ATM communications receivers
appear to be a little too insensitive to do a good job of detecting the
start of the flare.) The qualification "might" was included here because
although the colliding particles might not cause much radio noise directly,
indirect effects unknown to this author might severely reduce the value of
radio measurements when the satellite is passing through a particle
anomaly. This matter should be studied further. There probably exist
satellite communications or telemetry data which could provide a definite

answer to this.

-
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L. DISCUSSION
L.l Conclusions on Radiation Measurements for a Flare Alarm

The conclusions of this study pertinent to the early automatic detec-
tion of solar flares of Hy importance greater than or egual 1 are as
follows: -

1. Soft X-ray measurements are potentially about the best
measurements for an alarm system for the early detection
of sgolar flares. Although hard X-rays, centimeter-
wavelength solar-radio bursts, and flashes at certain
EuV ﬁavelengths usually have faster rise times and
peak earlier than the soft X-rays, the data available
to date show that on the average the measurable
start time of the soft X-rays occurs earlier than the
start times for these other types of data. The best
wavelength range to use 1is not clear, but it appears
that data taken in the 1-8, 2-12, or 8-16 i range are
better than #i-60 A or A < L A. Although the "atter-
the-fact" start time will generally precede the start
time detected by a real-time alarm system, the data
studied in section 3 indicate that the alarm-detected
start time can be as early or earlier for soft X-rays
than for solar radio bursts, providing the alarm
system is sensitive enough.

2. The X-ray alarm system discussed in ATM Exp SO054 (1967)
with a four-times spacing between threshold levels is
too coarse to assure the early detection of flares.

(The revised spacing of 1.45 times should be much
better.)

3. If the X-ray alarm is made more sensitive, the prob-
lem of false alarms due to particle interference and
subflares will increase. The percentage of X-ray en-
hancements that are accompanied by flares of Heo lmpor-

tance greater than or equal to 1 1s roughly inversely
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proportional to the smallest X-ray enhancement that can
be detected by the alarm system. Figures 7 and 8 ingicate
that a simple threshold device could not avoid false
alarms from subflares if the threshold levels were spaced

closer than four times or 0.001 ergs em™®

sec”™® in the
8-16 & range. An alarm system that also takes into
account the rate of change of the flux should be used.
Available information on extreme ultraviolet (BEUV)
radiation does not indicate that EUV measurements would
improve the alarm system. More EUV measurements should
be made and the preflare characteristics of these data
should be studied in detail, The available data indicate
that EUV enhancements have characteristies ranging from
being similar to the impulsive centimeter radio bursts
to resembling the slower soft X~ray bursts, depending

on the wavelength observed. The percent flare enhance-
ment of EUV radlation 18 mucit iess uwuau tor ooft X roye.
Hard X-ray measurements would not improve an alarm
system intended to detect all flares of Hx importance

1 or greater, but would be valuable for predicting
electron events.

Solar radio measurements would not provide a remarkable
improvement over a soft X-ray alarm system operated at
its full potential, but it could provide about as good
an alarm as the soft X-ray measurements. The avail-
able data suggest that measurements‘in the 2,000 to
5,000 MHz range would be best from the viewpoint of early
detection and for complete detection. The addition of
centimeter radio measurements to an X-ray alarm system
should provide the following improvements: (a) confir-
mation of a flare, thereby providing more certainty
against false alarms; (b) redundancy, in case of mal-

function of the X-ray alarm system; (c).an alarm less
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influenced by particle interference; (d) an earlier
detection of the start time for at least about 10

- percent of the Hy flares of importance 1 or greater;
and (e) an increase perhaps of about 10 percent in
the number of flares detected. (This last value of
10 percent assumes the X-ray alarm system can detect
increases in the 5-20 K radiation of 0.002 ergs cm;:3
sec™ and for a radio alarm system as sensitive as
present ground-based systems. For the leds sensitive
X-ray alarm being planned, this value would be higher;

and, conversely, for a radio alarm system wilth less

sensitivity, the value would be lower.)

L.2 Suggestions for Further Study

There presently exists a wealth of high quality recordings of soft
X-ray and solar radio data for flares which were not available in time
for the present study. These data should be used in flare alarm simula-
tion studies to evaluate and improuve flarc alarm designa. Problems aue
to particle interference and the use of solar radio measurements to al-
leviate these problems should be studied further. The use of an alarm
sensitive to the time rate of change of flux as well as the flux intensity
should be studied. Such a system might permit an incréase in sensitivity

for the early detection of flares without increasing the false alarm rate.

4.3 Suggestions of Possible Interest to the ATM Program

The original purpose of the ASE X-ray alarm system seems to have
been to automatically start the flare mode of the ASE X-ray experiment on
ATM. Apparently, the only resson for the alarm and display for the
astrongut was to notify him that the flare had started so that he
could center the X-ray telescope on the X-ray flare. The use of this
glarm has seemingly been extended to function as a start switch for the
flare mode of several of the ATM experiments. If the flare alarm is

made more sensitive in order to detect the start of the flare then
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the number of false alarms will undoubtedly increase. Since the available
film for flare obServations varies from experiment to experiment, the
number of false alarms that can be afforded varies among  the experi-
ments., Hence, different experiments need different threshold levels in~

the flare alarm system.

When the flare predictions are very high, or if most of the ATM mis-
sion has been completed and no flare observations have been made, 1t would
probably be desirable to lower the threshold level used to trigger a
given experiment. Also, it might be desirable to let the astronaut set
an alarm for himself that is more sensitive than the threshold level
being used to trigger the flare mode of the experiments in operation at
the time. It might be helpful to provide the astronaut with a chart re-
cord of the X-ray flux over the past two orbits. This would quickly and
simply allow him %o put current X-ray flux measurements in perspective
rather than having to rely dn his memory of the Exposure Display Counter

or Intensity Display Counter.

It might be of value to make the rate at which data are taken to be
prupus GLonal Bo toth the rote of chenaa and the dnecrease of the soft X-rav
flux and/or solar radio emission, rather than having just a high-time
resolution mode and a low time resolution mode. This could reduce the
problem of early detection versus false alarms from subflares and it
might conserve the data film. When the soft X-ray flux starts to in-
crease slowly, it is hard to tell whether a large flare will follow or
just a subflare; but if the flare is large, it would probably be nice to
have data for the early gradual rise portion at a higher rate than the
nonflare rate. Since the rise is gradual a very high rate would probably
not be needed; and éince the flare could turn out to be small, the high
rate could waste much film. It should be possible to solve this problem
with a data rate controlled by a combination of the time rate-of-change
and amount of increase of the X-ray flux. Such a system could provide
very high rates during the rapid onset of the flare, moderate rates at

the peak of the radiation,and slow rates during the slow decay.
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